
Logistics Management Institute

Use of Rapid Application
Development Techniques

Designing the Staff Resource Tracking Tool

IR715T1

September 1997

John B. Harris
Frank L. Eichora

David L. Goodwin
Joel L. Henson

release; «sorM

19971125 015

~:::-\h
-"*

Use of Rapid Application
Development Techniques

Designing the Staff Resource Tracking Tool

IR715T1

September 1997

John B. Harris
Frank L. Eichorn

David L. Goodwin
Joel L. Henson

LOGISTICS MANAGEMENT INSTITUTE

2000 CORPORATE RIDGE

MCLEAN, VIRGINIA 22102-7805

Contents

Chapter 1 Background and Scope 1-1

RAPID APPLICATION DEVELOPMENT 1-1

OBJECT ORIENTATION 1-1

Chapter 2 Approach 2-1

TRAINING 2-1

SELECTION OF TARGET APPLICATION 2-2

SURVEY OF POTENTIAL USERS 2-2

Chapter 3 STRTT Application Development 3-1

PROBLEM DEFINITION 3-1

ANALYSIS 3-2

Chapter 4 Alternative Solutions 4-1

BUILD—CUSTOM DEVELOPMENT 4-1

BUY—COTS PACKAGE 4-1

INTEGRATE—HYBRID SYSTEM 4-2

SUMMARY COMPARISON OF ALTERNATFVES 4-2

RECOMMENDATION 4-2

FIGURES

Figure 3-1. Use Cases and Actors 3-4

Figure 3-2. Update Staff Information 3-5

Figure 3-3. Manage Task Team 3-7

Figure 3-4. Maintain Task Information 3-8

Figure 3-5. Manage Staff 3-10

Figure 3-6. Manage Program 3-12

Figure 3-7. Class Analysis Diagram 3-13

in

TABLE

Table 4-1. Alternative Solutions Matrix 4-3

IV

Chapter 1
Background and Scope

The practice of developing software for computer systems is constantly evolving
and consistently a high priority. Whether one is building new weapon systems or
new tax processing systems, the most costly segment is generally designing, con-
structing, testing, implementing, and maintaining the software. Accordingly, the
search for improved programming languages and better methods for creating
software applications is continuous and highly publicized and scrutinized.

RAPID APPLICATION DEVELOPMENT

One of the newer methods of designing and building software is called rapid ap-
plication development, or RAD. "Newer" is used loosely; the RAD concepts have
been known and practiced to some degree for a decade or more. But only in the
last year or two have these concepts become widely supported by many well-
received automated tools that help perform the design and programming chores.
Increasingly, government managers of system development, some of them Logis-
tics Management Institute (LMI) clients, are being faced with decisions about de-
velopment tools and languages—with names like Visual Basic, Delphi, and
Rational Rose—and ask our advice. Potential vendors are likely to propose that
they "use tool A for requirements analysis, tool B for the design, and tool C for
programming." Our clients then ask us if this plan makes sense; are they likely to
get an operating and maintainable system as a result? The broad purpose of this
task is to increase LMFs exposure to RAD methodologies and tools so that we are
in a better position to provide valuable answers to these kinds of questions.

RAD is based on a few basic principles: (1) joint design teams with trained and
motivated participants from both the development and functional user organiza-
tions, (2) integrated computer-aided software engineering (I-CASE) tools to cap-
ture requirements and design information and reuse it for software development
purposes, and (3) an iterative process for demonstrating the software to users as it
is developed, using the immediate feedback to converge on useful solutions and
minimize undesired surprises.

OBJECT ORIENTATION

Recently, a complementary analysis/design/programming methodology (with as-
sociated automated tools) has become popular: object-oriented (OO) methodology
and tools. These OO approaches represent a paradigm shift from some more tra-
ditional development methods such as structured analysis and design. Where

1-1

those methods evolved around complex systems that used algorithms as the fun-
damental building block, 00 methods have evolved around objects and classes as
their building blocks. The difference can be appreciated by looking further at the
object model.

The central component of the object model is an "object." Definitions vary, but
we can generally say that from a systems standpoint, an object is a tangible entity
that exhibits some well-defined behavior and combines the properties of proce-
dures and data in one package. Objects are instances of some class or group of
items that exhibit similar behavior and characteristics. Objects have a state or
value and an object's behavior is how it reacts to changes in its state. For exam-
ple, a vending machine is an object that exhibits different behavior when its state
changes by a user putting money into the machine.

There are four elements that comprise the object model:

♦ Abstraction—essential characteristics that distinguish an object from all
other kinds of objects

♦ Encapsulation—a means of packaging an object so that only valid opera-
tions on it are allowed

♦ Modularity—decomposing a system into cohesive, loosely coupled mod-
ules

♦ Hierarchy—a way to rank or order different abstractions of objects.

The use of object models has many benefits. Chief among them is that such sys-
tems tend to be resilient to change, making maintenance and enhancement easier.
There is also the claim of reduced risk for complex systems because the process
calls for integration of requirements, processes, and data throughout the life cycle.
Despite these promises, many experts recommend caution when embracing OO
technology.

There are two major reasons for this caution. First, certain types of problem do-
mains, such as computation-intense applications, do not lend themselves well to
OO technology. Second, OO development requires a shift in thinking for systems
professionals schooled in structured techniques. Recognizing this, an organization
should not make a commitment to OO without a trained and experienced staff.
Many projects have failed because this prerequisite was not met. Thus, an impor-
tant objective of this task was to have several LMI analysts learn, by attending a
formal class, the details of OO methods. We also wanted to make use of that
knowledge by considering process improvement at LMI and the potential to use
OO tools to improve an LMI process.

1-2

Chapter 2

Approach

TRAINING

Since one of the project goals was to increase staff knowledge of OO principles,
team members attended OO training courses. The first course was Object Oriented
Analysis and Design (OOA&D) from Learning Tree International. This 1-week
course was designed to "provide a thorough, practical knowledge of OOA&D
methods." It was an academic presentation of the history and evolution of OO
technology, an overview of terminology, and a discussion of a practical approach
for actual systems development. Another team member attended a similar course
offered by ObjectSpace Corp. This 1-week training session covered similar topics
but used hands-on, practical exercises that helped the students apply the concepts
they were learning. Clearly, this was a much more effective teaching method.

Two team members then attended 2-day training sessions from Rational Software
titled Introduction to Rational Rose/C++ using UML. Rational Rose is the indus-
try leader in computer-assisted OO modeling tools. Rose is an easy-to-use tool for
creating and maintaining the various diagrams used during OO development. The
tool then promises to build baseline C++ code (other languages are available) for
the designed system. This code provides a good start for the actual programming
of the final application.

Three team members also attended a 2-day workshop in developing "use cases"
(see Chapter 3 for a more detailed explanation of use cases) offered by Advanced
Systems Concepts. The workshop promised to provide extensive practice in de-
veloping use case descriptions and diagrams from given requirements. Unfortu-
nately, the course spent too much time espousing the value of performing
thorough requirements analysis and too little time working on exercises.

In addition to Rational, another vendor of leading-edge RAD tools and methods is
Template Software, Inc. Several of the LMI staff member attended briefings at
which Template explained their methods and described their software, which is
called SNAP. They claim very impressive performance on software development
projects and have the accompanying charts with statistics to support their claims.
We were sufficiently intrigued to discuss with Template how we could include
them in our task. Unfortunately, this discussion was not fruitful. The SNAP soft-
ware is prohibitively expensive (if you are not buying it to develop a significant
production system), and Template was not interested in providing an evaluation
copy for our testing purposes. Nonetheless, this remains an exciting product and
company; they merit consideration when looking for skilled RAD practitioners.

2-1

SELECTION OF TARGET APPLICATION

Another aspect of the task was to select an "LMI process" that we thought would
be a good test candidate for an RAD/OO development effort. We considered sev-
eral criteria as we evaluated potential LMI target processes:

♦ Internal or external process. We favored an internal process that occurred
entirely within LMI. Since this would in many ways constitute an experi-
ment with uncertain results, there might be disadvantages to including
non-LMI participants.

♦ Large "enterprise " project or smaller group-level project. An organiza-
tion's first RAD/OO endeavor should not be a highly visible or mission
critical project. We decided to seek a smaller project whose initial scope
could be limited to the program director group level.

♦ Value to LMI. Although avoiding mission critical projects, we did not
want to select a job with no real value. We sought a project where there
was a recognized and important need, but which had not yet been auto-
mated (effectively).

Our selection for a "good fit" process improvement application was (what we
called) the Staff Resource Tracking Tool (STRTT). The primary purpose of this
application is tracking the projected workload, by task, of the staff members so
that managers (program directors, program managers, project leaders) can deter-
mine staff availability and potential over- or understaffing problems. (Note the
emphasis on the word "projected.") This application is needed to complement ex-
isting Institute applications (e.g., the task status report and the monthly task sum-
mary) that detail actual accumulation of effort and cost. The following chapter
describes our selected application in more detail.

SURVEY OF POTENTIAL USERS

We surveyed users (two program directors and two project leaders) to help deter-
mine specific requirements of the STRTT application. The area of focus was on
LMI managers' requirements to assess staff availability and anticipated task man-
ning. The questions included the following:

♦ What management issues are not adequately addressed by existing tools or
other resources?

♦ How do they solve this problem now?

♦ What do they envision as a desirable solution?

2-2

Approach

♦ Who are the potential users of the new application?

♦ Is there a need to exchange data with other applications?

Information from the surveys was then combined and evaluated. The results con-
stitute the problem description, which is the starting point for the application de-
sign described in the next chapter. The primary requirement of the potential
application is to project, reserve, and track resources related to tasks. The task-
related resources to be managed are the staff members and the work skills they
possess. The need to project, reserve, and track those resources implies participa-
tion by the staff members, project leaders, and program directors. The objective of
the application is to provide an accurate picture of the resources (i.e., people and
skills) currently assigned to tasks and their projected availability for assignment to
future tasks. Such a capability is currently not available to program directors, pro-
gram managers, or project leaders. Consequently, management of human re-
sources is primarily extemporaneous.

2-3

Chapter 3

STRTT Application Development

PROBLEM DEFINITION

In the STRTT, we sought to develop an automated management tool that can
be used to project, reserve, and track resources related to tasks. The primary
components of this tool are people, tasks, and organizational policies and pro-
cedures. The specific requirements for the STRTT, all of which the initial ver-
sions may not address, include the following:

♦ People

>■ tracking availability of time for assignment to tasks or in projecting
potential tasks,

>• tracking professional development and skills,

>- tracking requirements for specific skills,

>- projecting estimated and actual percentages of commitment to tasks,
and

>- projecting staffing needs for adding personnel.

♦ Tasks

>- facilitating task planning by linking the project plan to people;

> tracking task progress, comparing actual values to projections;

>• showing who is working on a given task and how much time they have
committed;

>- conducting "what if scenarios;

>- tracking task funding at both the task level and various levels of con-
solidation;

>• conducting trend analysis of skills required, personnel, and funding;
and

>• conducting risk analysis as an integral part of task planning.

3-1

♦ Organizational

► integrating with time-keeping software,

>- integrating with task approval,

>- integrating with the task review process,

>- integrating with human resources and training to project staff require-
ments for new hires and training,

>- showing commitments versus projections, and

>- integrating with program tracking and assessment.

ANALYSIS

Analysis Methodology

The object-oriented analysis methodology selected for the STRTT application was
the Use Case/Requirements Model. In this model

♦ high-level use cases are developed to identify functional areas of the sys-
tem,

♦ a use case diagram is used to portray the system,

♦ expanded use cases are developed to show detail and the order of events,

♦ sequence diagrams are used to display process flow, and

♦ a class diagram is developed to show identified objects and their relation-
ships.

HIGH-LEVEL USE CASE

High-level use cases briefly describe the major process of the system and are
identified in the initial scoping efforts. They assist in partitioning the major func-
tional areas of the system.

USE CASE DIAGRAM

The use case diagram is a graphic portrayal of the system and its external stimuli.
The diagram displays the system or application, its actors, and the use cases de-
veloped for the system as well as the interaction between them.

3-2

EXPANDED USE CASE

The expanded use case is a narrative method of describing the system or process.
It normally contains the functionality of the system or application in response to a
stimulus from an external source. These use cases provide a method to capture
requirements, communicate to domain experts and users (from the perspective of
a systems designer), and develop a testing mechanism for the system or applica-
tion.

SEQUENCE/SCENARIO DIAGRAM

The sequence diagram is a design technique that begins to map the process de-
scribed in the narrative use case to object classes and their components. Sequence
diagrams are often used to depict use case scenarios. An example of a primary
scenario is one in which a specific process is performed as planned with no ex-
ceptions. A secondary scenario contains exceptions to the primary scenario. It is in
the sequence diagram that objects are specified and their state, behavior, and
identity are described. It is important to note that in object-oriented analysis the
dimension of decomposition is by things or concepts (objects and classes) versus
the traditional structured analysis dimension of decomposition by processes or
functions.

CLASS DIAGRAM

The class diagram is a logical view of the packages and classes. For a fully devel-
oped system, there are normally many class diagrams. The primary or main class
diagram is a logical view of the high-level packages.

USE OF OBJECT-ORIENTED TOOLS

We used the OO tool, Rational Rose, to capture information about our design. All
use case descriptions, use case diagrams, sequence diagrams, and class diagrams
presented in this chapter were generated by the Rational Rose tool.

STRTT Primary Actors and High-Level Use Cases

The analysis of requirements of the STRTT identified three primary actors and
five high-level primary use cases. The relationship of the use cases to actors is de-
picted in Figure 3-1. There are opportunities for additional use cases to expand the
capabilities of the system. The scope of the first iteration of the project has been
limited to ensure simplicity.

3-3

Figure 3-1. Use Cases and Actors

Staff memberN

Project leader

Manage task team

Update staff information

Maintain task information
Manage staff

Program director

The use cases and actors are as follows:

♦ Update staff information (staff member). This use case begins when the
staff member obtains a new skill level or task assignment. The information
is created, reviewed, modified, or deleted related to staff member time
availability and skill sets.

♦ Maintain task team (project leader, initiator; staff member). This use case
begins when the project leader has a task order and allows creation, re-
view, selection, modification, and deletion of team members.

♦ Maintain task information (project leader, initiator; program director).
This use case begins when the project leader has initiated a draft task or-
der. It provides the capability to create, review, modify, and delete task or-
der information.

♦ Manage staff (program director, initiator; staff member). This use case
begins when the program director has a requirement from a task order to
provide staff resources. It provides the capability to create, review, modify,
and delete staff members. The program director may also review assigned
task workloads and skills. Project leaders and staff members update infor-
mation related to skills and task assignment.

♦ Manage program (program director, initiator). This use case begins when
the program director reviews summary information about all tasks

3-4

STRTT Application Development

assigned to the group. It provides the capability to create, review, modify,
and delete task order information related to the group's program. This in-
formation includes funding, task progress, staff resources, and skills.

Expanded Use Cases

UPDATE STAFF INFORMATION

Description: This use case (Figure 3-2) begins when the staff member obtains a
new skill level or a task assignment. The information is created, reviewed, modi-
fied, or deleted related to staff member time availability and skill sets.

Figure 3-2. Update Staff Information

: Staff member
: Task : Project plan : Task products

^_

K-

■^n

^> 0

n 7:

<e

3-5

Actors: Staff member

Type: Primary, analysis oriented

Preconditions: Staff member is registered; all tasks are registered; staff member
has accepted a new task assignment.

Basic Course of Events:

1. This use case begins when the staff member accesses the STRTT and se-
lects him/herself for edit.

2. The staff member elects to update a task.

3. The staff member reviews current task and time commitments.

4. The staff member selects the task and projects his/her time commitment in
hours per week of anticipated participation on a task.

5. The weekly percentage of staff member time commitment is calculated
from the sum of all tasks associated with the staff member for all weeks
that have been recorded.

6. A visual display of percentage of time commitment is generated depicting
level of weekly workload and associated tasks for confirmation

7. The staff member exits the system.

Postconditions: The time commitment has been recorded and updated.

Alternatives:

♦ Alternative at 2: If the staff member is not registered, do not allow editing.

♦ Alternative at 6: If the staff member time commitment exceeds
100 percent for any week, notify of conflict. Allow entry.

♦ Alternative at 7: Allow print report of visual display.

MANAGE TASK TEAM

Description: This use case (Figure 3-3) begins when the project leader has initi-
ated a draft task order and needs to get resources. It provides the capability to cre-
ate, review, modify, and delete task order information. This use case depends
upon the maintain task information use case.

3-6

STRTT Application Development

Figure 3-3. Manage Task Team

: Project leader

1:

: Skills

ü*-

: Task : Project plan
: Staff member : Task policy

-*D
n 6:

<—

*D

Actors: Project leader (initiator), staff member

Type: Primary, analysis oriented

Preconditions: A current task order exists in the system.

Basic Course of Events:

1. This use case begins when the project leader has a task order that he/she
needs to staff and accesses the STRTT.

2. The project leader selects the skills required. From the skills required, the
project leader reviews the staff member time commitment to assess avail-
ability of staff members.

3. The project leader reserves staff members whose skill sets are required and
who are available.

4. The project leader reviews the reserved task team members for the task in
a visual display.

3-7

5. The project leader confirms the reservation and records it in the system.

6. The project leader exits the system.

Postconditions: The task team reservation has been recorded and updated.

Alternatives:

♦ Alternative at 3: If staff member's time is fully committed, allow for a
conditional reservation of time.

♦ Alternative at 5: Allow print report of visual display.

MAINTAIN TASK INFORMATION

Description: This use case (Figure 3-4) begins when the project leader has a draft
or finalized task order and needs to develop a project plan. It provides the capa-
bility to create, review, modify, and delete task order information.

Figure 3-4. Maintain Task Information

: Project leader

1:

<

: Task : Project plan : Task products : Program director

*U
^>

^r

6:

K '

3-8

STRTT Application Development

Actors: Project leader (initiator), program director

Type: Primary, analysis oriented

Preconditions: Individual has been assigned as project leader.

Basic Course of Events:

1. This use case begins when the project leader has a draft or finalized task
order and he/she needs to develop a project plan and accesses the STRTT
and elects to create a new task.

2. The project leader creates a new task.

3. The project leader creates a project plan and develops tasks, durations, and
milestones.

4. The project leader reviews the task order project plan in a visual display.

5. The project leader reviews the project plan, saves it, and submits it to the
program director for approval.

6. The project leader exits the system.

Postconditions: The task order has been recorded and the program director noti-
fied for approval.

Alternatives:

♦ Alternative at 1: Proposed or projected task orders may be entered under a
"proposed" status.

♦ Alternative at 4: Allow print report of visual display.

MANAGE STAFF

Description: This use case (Figure 3-5) begins when the program director has a
requirement from a task order to provide staff resources. It provides the capability
to create, review, modify, and delete staff members. The program director may
also review assigned task workloads and skills. This use case depends upon the
update staff information use case and the maintain task information use case.

Actors: Program director (initiator), staff member

Type: Primary, analysis oriented

3-9

Figure 3-5. Manage Staff

: Program director

<-

' 7:

<r

: Program

^

f-

: Skills : Institute
: Staff member

->

->r

^

Preconditions: Staff information is current and updated; task order information is
current and updated.

Basic Course of Events:

1. This use case begins when the program director has current and projected
task orders within his/her program group and needs to get resources.

2. The program director accesses the STRTT and elects to review projected
staff time commitment.

3. The program director identifies any under- or over-committed staff mem-
bers in a consolidated visual display.

4. The program director elects to review staff skills.

3-10

5. The program director identifies any under- or over-committed skills and
usage trends in a consolidated visual display.

6. The program director adds, modifies, or deletes staff members.

7. The program director exits the system.

Postconditions: New staff members have been added or departing staff members
have been deleted.

Alternatives:

♦ Alternative at 3: The program director identifies any under- or over-com-
mitted staff members individually in a visual display.

♦ Alternative at 4: The program director identifies any under- or over-
committed skills and usage trends by specific skill set and experience
level.

MANAGE PROGRAM

Description: This use case (Figure 3-6) begins when the program director reviews
summary information about all tasks assigned to the group. It provides the capa-
bility to create, review, modify, and delete task order information related to the
group's program. This information includes funding, task progress, staff re-
sources, and skills. This use case depends upon the update staff information use
case, the maintain task information use case, and the manage staff use case.

Actors: Program director (initiator)

Type: Primary, analysis oriented

Preconditions: Staff information is current and updated; task order information is
current and updated.

Basic Course of Events:

1. This use case begins when the program director elects to review the tasks,
both actual and projected, registered for his/her group and accesses the
STRTT.

2. The program director elects to review all tasks within a program.

3. The program director selects a task-related project plan and reviews dura-
tions, milestones, deliveries, and actual-versus-projected expenditures in a
visual display.

3-11

4. The program director selects summary view of task for projected and ac-
tual durations, projected and actual staff member requirements, and pro-
jected and actual expenditures in a visual display.

5. The program director exits the system.

Figure 3-6. Manage Program

: Program director
: Program : Project plan : Task

Postconditions: Program has be reviewed and/or updated and reports generated if
required.

Alternatives:

♦ Alternative at 3: The program director elects to review tasks assigned to a
specific project leader.

♦ Alternative at 4: The program director elects to review summary data, ex-
cluding projected tasks.

♦ Alternative at 4: The program director elects to review summary data, ex-
cluding actual tasks.

3-12

STRTT Application Development

STRTT Class Analysis Diagram

The class analysis diagram (Figure 3-7) illustrates the emerging software archi-
tecture requirements. It can be generally equated to other activity modeling tech-
niques such as IDEFO [ICAM (Integrated Computer Aided Manufacturing)
Definition 0]. The primary differentiation is that the model has meaning to both
functional experts and information systems experts. This analysis diagram can be
expanded into a design model, which will enable programming of a custom appli-
cation.

Figure 3-7. Class Analysis Diagram

Skills

jjSkill type :
^Skill level

Person

^Name
^Assignment

I,

Program
^Title

t-bs qualifications / ¥ 1.."
o

Manages

jS r Program director

1.."

Staff member-.,

(from Use Case Vieirj.^

%LogOnlD

Project leader ■■-=■— ,■

(from Use Case Uew) (from Use Case Vdew) /

%LogOn ID %U.g0n ID lspa'rtof

/

fequirvs

Wo/Us on

Manage
\

/

\
is a part of

\

11
Institute

IT
Defines

\
\ 1.."',

\ 0.

Task
^.Task number
^Task title

7" ^

Project plan
^Duration
^jTask tearri
^Costs

Is documented in Generates

x\

Task products

^Deliverables

Task policy

^Approval process

Note: 1 ..* and * are cardinality of relationship.

3-13

Chapter 4

Alternative Solutions

As we have described, the primary purpose of this project was to familiarize our-
selves with and assess the potential value of using 00 analysis and design tech-
niques. In an effort to enhance the value of our efforts, we selected a pilot project
that, if implemented, would be of value to the Institute. Having completed the
analysis and design, we are now in a potential system development situation. Es-
sentially, we have the typical "build or buy" decision to make. This chapter ex-
plores that decision and describes three basic approaches. For each alternative, we
have included a high-level description and a discussion of the advantages and dis-
advantages.

BUILD—CUSTOM DEVELOPMENT

The OO design and templates described in Chapter 3 can provide the basis for a
systems development effort. An OO-aware development tool, such as Rational
Rose, could begin the effort by taking the completed design and generating code
such as C++ or PowerBuilder from Powersoft. This code would be the foundation
for the application, containing the appropriate physical implementation of the data
model. Programmers could then design the user interface, including menus,
screens, queries, and reports.

Custom development provides the most flexibility in providing a tailored solution.
Design changes, such as screens and reports, can be easily accommodated. Logos,
company-specific terms, titles, and formats can all be incorporated in a custom
package. On the other hand, as with any custom development effort, this is proba-
bly the most expensive in terms of resources and risk. However, automated design
tools like Rational Rose should reduce development time compared with struc-
tured techniques and facilitate iteration and design changes that will occur during
the process. Maintenance costs should also be reduced, though they will still
probably exceed those of the other two alternatives.

BUY—COTS PACKAGE

The second alternative is to locate a commercial off-the-shelf (COTS) package
that satisfies all or most of our requirements. Using our application requirements
and design, we would survey the market for existing software that meets our
needs. If potential packages are identified, we would install, evaluate, and rate
them against our design. We would further assess implementation issues, includ-
ing integration with our existing systems and product supportability.

4-1

Using a COTS package has many advantages over a custom development. To be-
gin with, product cost is usually substantially less. If there are a large number of
users, the difference can be reduced, but site licenses and other blanket agree-
ments still keep the cost down. Actual development problems are almost com-
pletely eliminated. Programmer expertise and availability is not a factor nor is
maintenance of code. The disadvantages stem from trying to fit a standard pack-
age to our needs. The degree of customizing necessary depends on the variance
between what is available and what is required. This will be determined during the
package evaluation, but it is definitely a potential problem.

INTEGRATE—HYBRID SYSTEM

The third alternative involves combining various COTS components to produce
an integrated solution. For example, a standard project management system that
tracks project and manpower data may be integrated with a database application to
perform specially designed data manipulations, with possibly a third product pro-
viding formatted reports and graphics. The basic idea is that no one COTS product
would satisfy all of the requirements, but two or more could be seamlessly inte-
grated to provide a total solution. In addition, some custom programming may be
necessary to accommodate the integration, but far less programming than the
amount involved in the custom development alternative.

The advantage of this approach is that it combines the time-saving and cost-
reduction advantages of using COTS products—without being limited to the
functionality of a single package—and increases the likelihood of meeting all re-
quirements. The disadvantage of this approach is the broader product knowledge
that would be required during development. The mechanics of package integration
require more in-depth understanding than just package use. Open database con-
nectivity, object linking and embedding, dynamic link libraries, and other integra-
tion tools add a layer of complexity that can often affect performance and
reliability.

SUMMARY COMPARISON OF ALTERNATIVES

Table 4-1 summarizes the alternatives for system development.

RECOMMENDATION

Because the system requirements for this project do not appear to be significantly
unique, the higher cost and risk associated with a custom development effort
would not be justified. A single COTS package may provide all the functional re-
quirements we have identified, but to implement such a package would require

4-2

Alternative Solutions

significant changes to LMI internal processes. The best solution appears to be an
integration of COTS tools, which would give us the broadest capability with ac-
ceptable development time and risk.

Table 4-1. Alternative Solutions Matrix

Decision
criteria

Custom
development

COTS
package

Hybrid
system

Development costs High Low Medium

Maintenance costs High Low Low

Effort High Low Medium

Estimated delivery
time

6 months 2 months 3 months

Advantages Tailored solution
that meets all re-
quirements

Low cost

Ease of mainte-
nance

Proven product

Combines time-
saving and cost-
reduction advan-
tages of the other
alternatives

Disadvantages High cost

Programmer exper-
tise affects product

May not meet all
requirements

Potential system
integration issues

4-3

REPORT DOCUMENTATION PAGE Form Approved
OPM No.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering, and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

Sep97

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Use of Rapid Application Development Techniques: Designing the Staff Resource Tracking Tool

6. AUTHOR(S)

John B. Harris, Frank L. Eichora, David L. Goodwin, Joel L. Henson

5. FUNDING NUMBERS

PE0902198D

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Logistics Management Institute
2000 Corporate Ridge
McLean, VA 22102-7805

8. PERFORMING ORGANIZATION
REPORT NUMBER

LMI-IR715T1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Logistics Management Institute
.'000 Corporate Ridge
M■. .can, VA 22102-7805

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

A: Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Rapid application development techniques documents the learning process undertaken to achieve understanding and
proficiency in the use of state-of-the-art object-oriented tools to produce viable software. An exploration of
appropriate education and tools is undertaken and those experiences are used to conduct an analysis of requirements
and initial design of an internal Logistics Management Institute program management tool. The report concludes
with an assessment that RAD tools still need to mature; however, many components and processes related to object-
oriented analysis and design are helpful in capturing and communicating requirements.

14. SUBJECT TERMS

Rapid application development, software development, object-oriented (OO), unified modeling language (UML)
15. NUMBER OF PAGES

28

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-18
299-01

